Технология литейного производства
Анализ методов оценки сцепления пригара на стальном литье
Меню сайта

ТЛП
Курсовой [5]
Курсовые по технологии литейного производства. Записка с чертежами
ГОСТы [0]
ГОСТы для курсового по технологии литейного производства
Книги [1]
Литейное производство
Статьи [1]
Статьи по технологии литейного производства

Поиск

Архив

Форма входа

Календарь
«  Март 2024  »
ПнВтСрЧтПтСбВс
    123
45678910
11121314151617
18192021222324
25262728293031

Облако тегов

Наш опрос
Оцените мой сайт
Всего ответов: 33

Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz

  • Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0

    Минск, сейчас
    Веб-камера: 21.BY |  POGODA.BY
    Вы вошли как Гость · Группа "Гости" · RSS   29.03.2024, 00:54

    Таблица 1
    КАЧЕСТВЕННАЯ ОЦЕНКА ПРИГАРА


    Категория пригара
    Степень трудности удаления пригара при очистке

    Очень сильный

    Пригар с большим трудом удаляется пневматическим зубилом и только вместе с металлом тела отливки. Поверхность отливки после очистки иссечена зубилом, и на ней остаются полосы прочно пригоревшей смеси

    Сильный

    Пригар с трудом удаляется пневматическим зубилом. Поверхность отливки иссечена зубилом. Местами остаются участки пригоревшей смеси

    Средний

    Пригар хорошо удаляется пневматическим зубилом. Ручным зубилом тоже может быть удален, но с большим трудом. Поверхность после очистки очень шероховатая

    Слабый

    Пригар успешно удаляется ручным зубилом. Поверхность отливки после очистки немного шероховатая

    Очень слабый

    Пригар легко очищается ручным зубилом. Поверхность отливки после очистки не имеет следов пригара

    Нет пригара

    Поверхностный слой спекшейся смеси легко очищается даже без применения ручного зубила ударами молотка. Поверхность отливки после очистки гладкая

    С другой стороны, если пригар легко удаляется при проведении какой-либо операции, предусмотренной общим технологическим процессом изготовления отливок (термообработка, дробеструйная очистка и. т. п.), можно допускать на отливках образование пригара определенной величины.
    Поэтому естественно стремление литейщиков классифицировать пригар по прочности сцепления с отливкой и дать количественную оценку величины пригара.
    Ф. Д. Оболенцев  приводит классификацию пригара по методам, необходимым для его удаления, и по виду отделившихся частиц пригара (табл.2).

     Таблица 2

    КЛАССИФИКАЦИЯ ПРИГАРА ПО СПОСОБАМ, НЕОБХОДИМЫМ ДЛЯ ЕГО УДАЛЕНИЯ

    Способ удаления пригара Балл
    Ударом молотка по отливке  1
    Стальной щеткой (ручной или механической)  2
    Пескоструйной очисткой  3
    Дробеструйной очисткой

     4
    Пневматическим зубилом:
    - пластами
     5
    - мелкими частицами вместе со слоем металла  6

    значения при одинаковой толщине пригарной корки метод Н. Т. Жарова дает одинаковые работы для пригара 5, 6 и 7-го баллов (см. табл.2), и, наоборот, для пригара, отделяющегося пластами (5-й балл), величина работы будет зависеть от толщины пригарной корки, хотя прочность сцепления пригара с отливкой остается одной и той же.
    По сопоставлению величин затраченной работы на удаление пригара со временем очистки отливок производственными способами получены корреляционные соотношения, позволяющие рассчитать относительную величину трудозатрат, необходимую для удаления исследуемого пригара в производственных условиях.

    Таблица 3


    Способ очистки отливок

    относительная величина трудозатрат для удаления пригара Корреляционное соотношение

    Галтовочный барабан Пневматический молоток Пескоструйная камера Дробеметный барабан

    tv. б == -50,6 + + 113,6Ауд

    Тп.м== 5,23+2,11Ауд

    Тп.к= 0,14+0,012Тс

    Тд. Б = 24,91 + 17.33Ауд+ 1,5Тс

     И.Б. Куманиным  предложена классификация пригара (табл.4) в основу которой положено представление о том, что пригар всегда состоит из зерен наполнителя, сцементированных затвердевшей жидкостью. Этой жидкостью могут являтся металл или его окислы, проникшие в поры формы, или легкоплавкие соединения и сплавы, образовавшиеся в результате взаимодействия между окислами металла и формовочными материалами, или, наконец, жидкое вещество может возникнуть в самом формовочном материале за счет расплавления примесей, входящих в его состав, или же за счет образования легкоплавких силикатов. 


    Таблица 4

                        Классификация пригара по способу его удаления ( по И.Б. Куманину)                            
      

    Условная степень пригара

    Характеристика слоя пригара

    Способ удаления пригара

    Механический

    Термический

    Химический

     

    Характеристика пригарных корок

    0
    (нулевая)

    Легкоотделимый

    При выбивке

     

    Не связана с отлив­кой. Легко отделяется в виде кусков спекшей­ся формовочной смеси, сохранившей зерновое строение

    Не связана с отливкой. Хрупкая, легко ска­лывается

    1 (первая)

    Отделимый

    При очистке литья

     

    Наружная часть кор­ки рассыпчатая. От­ливка умеренно свя­зана с коркой. Четкая граница между прига­ром и металлом

    От рассыпчатой до монолитной. Четкая гра­ница между пригаром и металлом. Умеренная связь с отливкой

    2 (вторая)

    Тонкий слой трудноотделимый

    Вырубкой

    Состоит из металла и зерен формовочного материала, прочно со­единена с отливкой. Толщина слоя до 4 мм

     

    Монолитная и проч­ная. Нет четкой границы между пригаром и ме­таллом. Прочная связь с отливкой. Толщина слоя до 4 мм

    3 (третья)

    Толстый слой трудноотделимый

    Вырубкой

    Состоит из формовоч­ного материала и ме­талла. Прочно соедине­на с отливкой. Толщина слоя больше 4 мм

     

    Монолитная и проч­ная. Нет четкой границы между пригаром и ме­таллом. Прочная связь с отливкой. Толщина слоя больше 4 мм

    3.Методы
    количественной оценки пригара.

    В основу количественной оценки величины пригара положены относительные величины трудозатрат на удаление пригарной корки двумя видами механического воздействия: истиранием и ударом. Для количественной оценки трудозатрат на очистку литые образцы, на которых образовался пригар, подвергают испытаниям на двух приборах. Первый из них разработан ВПТИлитпромом (г. Ленинград) и определяет время Тд стачивания пригарного слоя абразивным кругом [4]. Второй прибор, созданный в лаборатории технологии литейных процессов Челябинского политехнического института, измеряет удельную работу разрушения Луд корки пригара ударным воздействием бойка долотчатой формы [6].

      3.1. Методика количественной оценки пригара.

          Для определения влияния того или иного фактора на образование пригара необходим метод его количественной оценки. Такой метод может быть использован при выборе рациональных технических средств (типа очистного оборудования) или при определении влияния технологических факторов (например, состава смеси) на образование чистой поверхности отливок. С этой целью был изготовлен  опытный образец прибора, позволяющий производить оценку химического и механического пригара по трудоёмкости его  удаления с поверхности отливок. В качестве основного критерия принято время отсутствия электрического контакта между стальным щупом и поверхностью образца. По времени, затраченному на снятие пригара при постоянном усилие обработки, числу оборотов абразивного круга и образца определяется энергия, израсходованная на удаление пригара.
    Прибор состоит из двух электродвигателей (типа ДПТ-21-4, N=0,27 квт, n=1400 об/мин и типа АОЛБ-11/2, N=0,08 квт, n=2890 об/мин, имеющего возможность свободного перемещения вокруг вертикальной оси в горизонтальной плоскости), червячной пары, передающей вращательные движения от двигателя исследуемому образцу, абразивного круга и  подвижного стального щупа пластинчатого типа. Прибор работает в полуавтоматическом режиме. При нажатии на кнопку «пуск» цепь управления замыкается, через обмотку магнитного пускателя проходит ток, срабатывают контакты магнитного пускателя, осуществляется одновременный пуск двигателей.

    Рис.3.   Принципиальная схема прибора для количественной оценки пригара


    Двигатели имеют различные направления вращения. На валу двигателя АОЛБ – 11/2 закрепляется абразивный круг с наружным диаметром 50 мм и толщиной 5 мм, двигатель ДПТ – 21-4 через редуктор передает вращательные движения исследуемому образцу со скоростью 20 об/мин. Режим абразивного круга к образцу в процессе обработки остается постоянным и осуществляется с помощью груза посредством  гибкой связи через блок. Стальной щуп регулируется таким образом, чтобы в процессе обработки образца абразивным кругом он точно  фиксировал траекторию воздействия абразива на образец по кругу.

    По  мере воздействия абразива на образец снимается пригарный слой, обнажается металлическая поверхность и через щуп происходит сначала кратковременное, а затем все увеличивающееся по мере обработки замыкания реле  времени накопительного типа до тех пор пока сумма  времени в замкнутом состоянии не достигнет времени  настройки реле. При времени накопления, равном времени настройки, в цепи управления  размыкаются контакты, и двигатели автоматически отключаются. Время с момента включения электродвигателей до их автоматического выключения фиксируется секундомером. Указанный процесс повторяется до тех пор, пока время обработки за цикл, замеряемое секундомером, не будет равняться времени настройки реле, что указывает на отсутствие пригара. Таким образом, время удаления комплексного пригара равно разности сумм общего времени обработки образца  абразивом, замеряемого секундомером (времени работы электродвигателей за n циклов), и времени соприкосновения щупа с очищенной от пригара поверхностью образца, равного произведению времени настройки реле на число циклов:
    Т=(tn + tn-1 + ...+ t1 + t0) - nt                                                                          (3.1)
    где  T – время удаления пригара с образца;
    t0 ,tn ,tn-1 - время обработки образца за цикл;
    t – время настройки реле;
    n – число циклов.
    При  времени обработки за цикл t0, равном времени настройки реле времени t, пригара нет.
    Исследования проводились на образцах в форме пластин размером 80х80 мм, толщиной 15, 30, 45, 60 мм, заливаемых в блок 80х80х310 мм и разделенных друг от друга стержнем из исследуемой смеси толщиной 40 мм.
    Работоспособность прибора проверялась при исследовании пригарообразования на чугунных образцах марки Сч 15-32, отлитых в формы из жидких само отвердевающих смесей. В исходную смесь вводились добавки: каменно угольная пыль (1-3%), инден-кумароновая смола (0,25-2,0%), сульфитно-спиртовая барда (0,5-1,25%), алюминиевая пудра (0,25-0,75%), мазут (0,5-1,5%), смола С1 (0,25-1,0%), торфяная зола (0,5-1,0%). Результаты исследований (рис.1) показали, что наименьшей склонностью к образованию пригара обладают смеси с добавкой инден-кумароновой смолы (2%), древесного пека (5%) и каменноугольной пыли (3%); время, затраченное на удаление пригара при применении этих добавок, для образца толщиной 60 мм, колебалась в пределах 1-5 сек., тогда как на удаление пригара при применении торфяной золы (1%) и сульфитно – спиртовой барды (1,25%)затрачивалось 150 –400 сек. Широкий диапазон времени удаления пригара (от 1 до 400 сек.) свидетельствует о возможности использования данной методики при выявлении влияния различных технологических факторов на величину пригарной корки.
    На рис.2 показано влияние содержания инден-кумароновой смолы и толщины образца на трудоемкость удаления пригара. Увеличение толщины стенки с 15 до 60 мм при применении смеси с добавкой инден-кумароновой смолы в количестве 0,25% приводит к увеличению времени обработки с 2 до 30 сек,а уменьшение содержания добавки с 2 до 0,25% способствует образованию пригара.
    В результате исследований было выявлено влияние содержания и типа добавок на образование пригара и подтверждена возможность использования данного метода для количественной оценки пригара.

    3.2.Определение удаляемости пригара с поверхности
    отливок с помощью щеток

          Отливки, полученные в песчаных формах, всегда имеют на поверхности более или менее прочно с ней связанный слой материала формы, т. е. Пригар. В одних случаях формовочная смесь в слое пригара полностью становиться непригодной к повторному употреблению, примером чего может служить корка, образующаяся на поверхности отливок из стали Г1ЗЛ. В других случаях спекшаяся смесь не теряет своих свойств, но в процессе удаления с поверхности отливки большая  часть зерен размельчается и становиться негодной для повторного использования. Поэтому часть смеси, поступающая с отливками в очистные отделения, направляется обычно в отвал, независимо от наличия регенерационной установки. Поскольку для сохранения постоянства объема формовочной смеси, находящейся в обороте цеха, ежедневно должно удаляться количество отработанной смеси, равное количеству поступающих в цех свежих песков и глин, толщина корки пригара большого интереса не вызывает. Иначе обстоит дело с прочностью сцепления корки пригара с поверхностью отливки. Представляется целесообразным основной характеристикой пригара считать силу его сцепления  поверхностью отливки или её обратную величину – удаляемость.
    В работах [6] предлагаются классификации пригара, основанные на его удаляемости с поверхности отливок. Попытка  выразить  количественно удаляемость пригара сделана Н. Т. Жаровым [6].Мерилом удаляемости пригара предложено считать работу,затрачиваемую на его удаление абразивным кругом. У предлагаемого метода есть существенные недостатки – громоздкость установки, возможность контакта и зажигания сигнальной лампочки при соприкосновении абразивного круга с металлом, проникающим в слой пригара.
    Новый прибор для определения удаляемости пригара с поверхности отливок представлен на рис.1.Прибор состоит из основания 1,на которое устанавливается испытуемый образец, стойки 2 и кронштейна 3. В отверстии кронштейна вращается бронзовая втулка 4 со шпонкой 7. Внутри втулки свободно передвигается по шпонке валик 5, на нижнем конце которого закрепляются две щетки 8, изготовленные из проволоки кордной ленты. Валик щетками опирается на поверхность образца под действием силы тяжести. При вращении втулки за рукоятку 6 щетки передвигаются и счищают пригар с кольцеобразного участка поверхности отливки. Для эффективного удаления пригара рукоятка прибора поворачивается  попеременно в ту или другую сторону. Так как сила прижима щетки к поверхности отливки, количество и длина проволок щетки, а также площадь, очищаемая от пригара, - величина постоянные, количество «проходов» щетки может служить мерилом относительной оценки удаляемости пригара. Момент окончания процесса удаления пригара в первоначально изготовленном приборе определялся визуально. Прибор показал достаточную чувствительность и повторяемость результатов.



    Рис. 4.    Лабораторный прибор для определения удаляемости пригара

         Для исследования удаляемости пригара  на отливках была разработана специальная клиновидная технологическая проба (рис.5). Проба имеет тело переменной толщины и полузамкнутую часть, через которую пропускается металл. Расположение питателей позволяет размещать модель пробы на модельной плите у шлаковика или у какой-либо части отливки. При выбивке проба отделялась от отливки и подвергалась исследованию. Опыты показали, что для удаления пригара с поверхности образца в месте, имеющем толщину 20 мм, требовалось 15-20 «проходов» щетки при единой смеси и 5-15 «проходов» – при применении облицовки; при толщине 25мм для удаления пригара требовалось 30-35 и 10-25 оборотов и при толщине 35 мм соответственно 25-40 и 15-30 оборотов. Меньшие числа относятся к боковой поверхности со стороны, противоположной месту поступления металла в форму, Подпись: Рис. 5. Модель технологической пробы для определения удаляемости пригарабольшие – к нижней поверхности образца.
    Прибор неприменим на крупном стальном со сплошной коркой пригара, не поддающейся удалению металлической щеткой. Но на мелком и среднем чугунном и стальном литье, особенно в условиях массового производства с преобладанием механического и слабоспекшегося пригара, он может найти  применение.  
    Путем экспериментов сопоставлению величин Те и Ауд. со временем очистки отливок производственными способами получены корреляционные соотношения,  позволяющие рассчитывать относительную величину трудозатрат, необходимую для удаления   исследуемого пригара в производственных условиях .
    Различают три вида пригара: термический, механический и химический. Принятое разделение условно; оно облегчает описание явления, а при изучении конкретных случаев пригара позволяет оценить, какой вид пригара является преобладающим, чтобы принять меры по устранению дефекта. В действительности же условно выделенные виды пригара появляются большей частью совместно, так как процессы, их вызывающие, взаимосвязаны.

    3.3.Прибор для количественной оценки пригара кафедры МиТЛП ВолгГТУ.

       Количественная оценка пригара на отливках необходима для оценки противопригарного действия различных добавок в формовочную и стержневую смесь и для оценки эффективности противопригарных красок.
    За единицу измерения пригара целесообразно принять работу, затраченную на очистку 1 м² поверхности отливки.
    На кафедре '' Машины и технологии литейного производства'' ВолгГТУ был разработан и испытан прибор , для получения прочности на истирание быстросохнущих красок .

       Прибор состоит из воронки 1 в которую насыпают  стальную дробь диаметром1,5 –2 мм, стеклянной трубки 2 ,направляющей струю дроби на исследуемую отливку 3 и ящика 4 ,необходимого для сбора дроби.
    Поверхность отливки с пригаром устанавливается под углом 45° к оси трубки.
    Дробь сыплется на поверхность отливки с пригаром до тех пор, пока не будет удалена пригарная корка.
    Работа по удалению пригара рассчитывается по следующей формуле:

    где m- масса израсходованной дроби, кг;
    g- ускорение свободного падения, м/с²;
    h- высота падения дроби;
    а – площадь поверхности отливки очищенной от пригара, м²
    С помощью данного прибора оценивается работа по удалению пригара на стальных отливках с толщиной стенок 15мм, полученных с помощью стержней, окрашенных краской на основе пасты ЦБИ.
    Работа по удалению пригара с поверхности окрашенных стержней составила 44 кДж/м², на поверхностях полученных на неокрашенных стержнях 67 кДж/м².   

    3.4. Метод количественной оценки пригара предложенный Челябин                                     ским Политехническим Институтом

    Работая  над улучшением чистоты поверхности отливок из углеродистой стали, заметили, что между коркой пригара и металлом имеется больший или меньший зазор. Сначала его образование объяснили усадкой, но такой же зазор был и с внутренней стороны, где стержни или части формы остывающей отливкой сжимались. Установили, что прочность связи корки пригара с поверхностью отливки определяется относительной площадью зазора, т. е. вычисленной по отношению к общей площади соприкосновения формы с отливкой.
    Подпись: Рис.6 Образец из углеродистой сталиУсловия  образования зазора исследовали специально. В образец 2 исследуемой смеси диаметром 2 и длиной 4 мм заформовывали стержень 1 диаметром 0, 62 мм и длиной 3 мм из углеродистой стали (рис. 1). Его помещали в герметичную печь 5 (рис.7) с платиновым нагревателем, высокотемпературным микроскопом 7 МВТ, микрофотонасадкой 8 МФ-2 и системой регулирования и контроля температуры, опытных образцов 4 (рис.7: 1 — стабилизатор напряжения СТ-200;2 — ЛАТР-2; 3 — УТН-1: 6 — вольтметр: 9 — опак-иллюминатор). До заданной температуры до 1400°С в различной атмосфере печи образцы нагревались платиновой спиралью 3(см. рис.6) через 3 сек после включения тока. Исследовали образцы песчано-глинистых, песчано-масляных, жидкостекольных смесей и смесей огнеупорных материалов — циркона, корунда, глинозема, магнезита и др. Параллельно исследовали пригар на плитах 185Х110Х35 мм и втулках с наружным 190 и внутренним диаметром 120 мм, высотой 140 мм, а также на стальных производственных отливках.
    При нагреве до 1400°С в воздухе или техническом азоте металлические стержни сразу же покрывались пленкой жидких окислов металла, которые, взаимодействуя со смесью, образовывали окисный расплав, проникавший в поры смеси па различную глубину и с различной скоростью. В зависимости от степени поглощения расплава между отливкой и формой и образовывался зазор величины, различной по площади сечения (рис8: белые пятна — зерна кварца; серое — стальной стержень, темное — зазор).
    Подпись: Рис.7 Схема печи с платиновым нагревателемУстановлено, что в жидкостекольных смесях зазор появляется через 30—50 сек,   на   песчано-глинистых — через 1, 2—2 мин, а на песчано-масляных — через 2, 5 мин после начала высокотемпературной выдержки, что объясняется различием в количестве и вязкости образующихся силикатных расплавов. По тем же причинам зазор между стальным образцом и цирконовой, с 5% бентонита, формой появлялся лишь через 5 мин, а в корундовой и магнезитовой не образовался и через 10 мин. Атмосфера в печи заметно влияла на величину и скорость образования зазора: в пропан-бутане смесь с металлом стержня не взаимодействовала и зазор не появлялся даже через 10 мин., а в техническом азоте и воздухе скорость его образования резко возрастала.
    Степень окисления оценивали по остаточному диаметру металлического стержня. На рис. 4 представлен график его уменьшения в смеси 90% кварцевого песка К016 и 10% жидкого стекла с выдержкой при 1400°С на воздухе 1 и в техническом азоте 2. Изменение угла наклона кривых при 5 сек объясняется уменьшением скорости окисления в результате появления силикатного расплава, затрудняющего доступ кислорода к металлу.
    В этих же атмосферах определили скорости миграции силикатных расплавов из контактной зоны в норы смеси на воздухе 1 и в азоте 2. Повышенная скорость миграции в первые 10 сек связана с механическим внедрением в смесь жидких окислов железа из-за увеличения объема стального образца при окислении. Отмеченные данные подтвердили анализ шлифов граничных слоев плит,
    Подпись: Рис.8. Схема корки пригаравтулок и производственных отливок. Если сталь в поры формы не проникала, то корка пригара соединялась с отливкой застывшим железисто-силикатным расплавом как мостиками. Корка пригара на глубину до 15 мм пропитана темными силикатами с повышенным содержанием окислов железа. Ее поверхность со стороны отливки, где был зазор, глянцевая, а в местах контакта с отливкой — матовая или цвета излома железистого силиката.  Средняя относительная площадь контакта корки пригара с отливкой (суммарное сечение мостиков, отнесенное к общей площади корки) для легкоотделимого пригара жидкостекольных смесей по результатам замеров с микрометрической сеткой на 100 пригарных корках составляла 1—15%. При тех же условиях замеров для трудноотделимого пригара она составляла более 40%. При этом зазор по сечению был примерно в 2 раза меньше, чем в граничном слое корки легкоотделимого пригара.
    Таким образом, указанные величины, при прочих равных условиях, могут количественно характеризовать прочность связи пригара с отливкой. Установлено, что отделение корок пригара с одинаковой контактной площадью, но различных по составу исходной смеси или полученных при разных скоростях охлаждения отливок требует разных усилий: корки пригара, удерживаемые мостиками из закристаллизованного вещества, отделяются легче, чем связанные с
    отливкой стекловидным веществом.
    Рис.1 Механизм образования химического пригара представляется следующим образом.

    После заливки формы поверхность отливки 1 покрывается слоем 2 окислов и силикатов железа (рис. 6, а: 3 — зерна кварца, 4 — пленка крепителя). Скорость окисления стали в первый момент после затвердевания отливки 5 (рис.10, б) при наличии в порах формы большого количества свободного кислорода велика (рис.10) [14], образующийся окисный расплав накапливается в граничной поверхности, увеличивая относительную площадь контакта отливки и формы. Часть расплава проникает в глубь формы между зернами песка, образуя и связывая корку пригара с отливкой (см. рис.10, б). В дальнейшем окисление поверхности отливки резко замедляется вследствие уменьшения окислительной способности газов в форме и снижения температуры металла, скорость образования нового окисного расплава на граничной поверхности становится меньше скорости его миграции в глубь формовочной смеси, и между отливкой и формой или стержнем возникает зазор (см. рис.10, б). При этом относительная площадь контакта металла с формой уменьшается. Ширина зазора слагается из толщины окисленного слоя металла и величины растворенного окислами поерхностного слоя формы. Строение корки пригара в стадии в всегда соответствует легкоотделимому пригару.

    3.5. Метод оценки пригара по прочности сцепления

    Влияние усадки отливки на формирование пригара проявляется в том, что при отходе металла от формы, если последняя не разрушается, ширина и площадь зазора увеличивается, а при сжатии формы или стержня — наоборот (см. рис.10). Этим пригар на наружных поверхностях отливок отличается от пригара на внутренних при использовании одинаковых смесей. При механическом проникновении стали в поры формы стадия в наступает лишь после полного окисления просеченной части металла и миграции ее в виде окисного железистого расплава в глубь формы. Практически это происходит при очень длительном     температурном воздействии отливки на форму в условиях окислительной атмосферы
    Установлено также, что пригар различных смесей формируется по приведенной схеме с характерными для каждой смеси особенностями. Например, температура плавления и вязкость силикатного расплава .—FeO, образующегося при использовании жидкостекольных смесей, относительно низкие, что и объясняет его повышенную скорость миграции в глубь формы или стержня. Различия свойств образующихся окисных расплавов и обусловливают различное время температурного воздействия для наступления той или иной стадии строения корки пригара при прочих равных условиях. Следовательно, при постоянной температуре заливки наступление той или иной стадии строения пригарной корки зависит в основном от толщины стенки отливки, применяемой формовочной смеси и характера атмосферы в форме.                                          
    По результатам исследований были разработаны практические рекомендации по предотвращению пригара на отливках из углеродистой стали.
    При статическом напоре металла в форме из смеси на Кичигинском песке 1К0315А, не превышающем Нкр для данной смеси [2], химический пригар предотвращают так. При изготовлении отливок с толщиной стенки до 10—12 мм целесообразнее получать малоразвитый пригар (стадия, а на рис.10), для чего в смесь необходимо добавлять органические вещества, образующие восстановительные газы (битум, мазут, каменноугольная пыль и др.), замедляющие окисление металла и, следовательно, наступление стадии б в строении пригара (см. рис.10). На отливках со стенками 10—35 мм из-за большого времени воздействия высокой температуры процесс развивается до стадии трудно отделимого пригара (см. рис.10, б). Органические добавки здесь уже малоэффективны, но покрытия на основе маршалита, глинозема, циркона, корунда, алюминиевой пудры снова позволяют получать малоразвитый пригар. Отливки с толщиной стенок свыше 35 мм получаются с легкоотделимым пригаром, так как процессы переходят в стадию в.
    Добавки в смесь, создающие восстановительные газы. которые могут задержать развитие процессов на стадии б, в этом случае вредны. Нежелательны глины, шпаты, шлаки и т. д., увеличивающие вязкость и снижающие скорость миграции контактного расплава в форму. Окислительная атмосфера в форме или стержне при охлаждении отливки является положительным фактором, так как ускоряет все процессы, увеличивающие толщину и площадь зазора. Последнее подтверждено производственным применением кислорода для получения отливок с чистой поверхностью.
    При использовании песчано-глинистых смесей для отливок с толщиной стенки до 20—25 мм из исходного песка должны быть удалены глина, пыль; в формовочной смеси не должны быть остатков жидкостекольной смеси, примесей железных руд, шпатов и других легко спекающихся плавней. Добавка в смесь малозольных веществ (мазута, раствора битума) положительные результаты. Небольшие 0, 2—2% добавки в формовочную смесь Мg2СОз, NaCI и других солей, а также замена глин бентонитами создают условия для получения;
    легкоотделимого пригара. Формы и стержни отливок со стенками 25—50 мм рекомендуется покрывать красками или па стали на основе маршалита, циркона, корунда, так как при таких толщинах отливок наступает трудноотделимая стадия; пригара б (см. рис.10). Наружные сферические поверхности отливок со стенкам 50—70 мм получаются с легкоотделимым пригаром в (см рис.10). Здесь сказываются усадка металла и прочность формы в горячем состоянии, чему способствует зазор. Увеличит прочность формы при высокой температуре можно добавкам в исходную смесь жидкого стекла, железных руд и других плавней. Внутренние поверхности таких отливок рекомендуется покрывать пастами или облицовками на основе циркона корунда, хромомагнезита и магнезита.
    В формах из песчано-масляных и песчано-смоляных смесей отливки с толщиной стенки до 15—25 мм получаются с мало развитым пригаром. Песок в этом случае должен быть очищенным от глин и других плавней, а крепители не должны после выгорания оставлять много золы. Более толстостенные отливки следует изготовлять с применением высокоогнеупорных покрытий из маршалита, циркона (для стенок 30—60 мм и корунда, хромомагнезита, магнезита для стенок толщиной более 60 мм).
    При превышении критического напора металла в форме следует применять либо более мелкозернистые пески, либо специальные мелкозернистые высокоогнеупорные материалы виде покрытий и облицовок на формах и стержнях. Характер атмосферы в форме после заливки при применении пере численных высокоогнеупорных материалов влияет менее заметно, чем при применении кварцевых песков. С увеличением окислительной способности газов лишь несколько снижается огнеупорная стойкость противопригарного покрытия, особенно на основе маршалита и циркона. Меры по устранению пригар сводятся к подбору вида покрытия в зависимости от толщины стенки. Для форм и стержней отливок с толщиной стенки 20—25 мм достаточно маршалитовых красок. Формы и стержни отливок со стенками 25—50 мм требуют покрытия красками или пастами на основе глинозема, циркона или корунда.
    Формы и стержни более толстостенных отливок целесообразно покрывать пастами на основе корунда, хромомагнезита магнезита. Данные рекомендации были проверены в условия Челябинского завода «Строммашина» и дали положительные результаты.
    С другой стороны, если пригар легко удаляется при проведении какой-либо операции, предусмотренной общим технологическим процессом изготовления отливок (термообработка, дробеструйная очистка и. т. п.), можно допускать на отливках образование пригара определенной величины.
    Поэтому естественно стремление литейщиков классифицировать пригар по прочности сцепления с отливкой и дать количественную оценку величины пригара.
    Ни одна классификация, если она не связана с физическими характеристиками, конечно, не может охватить все случаи пригара, встречающиеся на практике, особенно, если учесть новые методы очистки отливок (например, пламенем газовых горелок, электрохимическим методом и т. д.).
    Говорить о прочности сцепления механического пригара с отливкой нет смысла, так как в этом случае трудность удаления пригара определяется прочностью самого металла и частотой струек, проникших в форму, на единицу площади. Поэтому в дальнейшем целесообразно говорить о прочности сцепления либо полностью окисленного механического пригара, либо чисто химического пригара. Последний случай часто встречается при использовании жидкостекольных форм для чугунного и высоколегированного литья.
    Прочность связи двух разнородных фаз (в нашем случае металла и пригарного вещества) при нормальной температуре определяется несколькими факторами.
    При охлаждении из-за разной природы, следовательно, различных термических коэффициентов линейного сжатия на границе раздела металл—пригарное вещество возникают напряжения, могущие при некоторых условиях привести к самопроизвольному отделению пригара от отливки. Очевидно, по сопоставлению коэффициентов расширения и сжатия металла и пригарного вещества можно судить о большей или меньшей вероятности получения легкоотделимого пригара.
    Отделяемость пригара будет зависеть также от прочности и пластичности пригарного вещества и от прочности связи пригара с металлом, определяемой поверхностными силами на границе раздела фаз (величиной работы адгезии). Первые две характеристики прочность и пластичность пригара могут быть найдены обычными методами. Основная трудность при этом (так же, как и при дилатометрических испытаниях) состоит в получении образца пригарного вещества необходимых формы и размеров.
    Максимальная прочность сцепления будет наблюдаться в случае, когда коэффициенты линейного сжатия металла и пригарного вещества равны. Тогда на границе раздела не возникают напряжения, и работа, необходимая для отрыва пригара от отливки, будет соответствовать работе адгезии. Хотя такого соответствия коэффициентов усадки на практике не встречается, с определенными допущениями работа адгезии может быть характеристикой прочности сцепления пригара с металлом. Например, при изменении содержания какого-либо компонента можно с достаточной обоснованностью пренебречь изменением коэффициента усадки металла; тогда адгезия одного и того же пригарного вещества может быть достаточно наглядной характеристикой сил сцепления.
    Работа адгезии, отнесенная к единице площади контактной поверхности, для случая контакта твердой и жидкой фаз (формовочный материал и жидкий металл или тв



       Счётчики:  


    Страницы: 1
    Показано 0-0 из 0 сообщений

    Copyright MyCorp © 2024
    Бесплатный хостинг uCoz